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Abstract

This analysis addresses the issue that texture properties are defined on ensembles of possible textures, while psychophysical

judgments of texture properties must be made on individual texture samples, or regions of uniform texture within a larger texture

field. Since the basic discrimination task requires comparison of two sample images (or regions) specified by different ensemble rules,

the viewer is thus required to compare the estimates of their ensemble statistics of single textures. This paper develops a theory of

texture discrimination incorporating a roving local sampling window that allows the visual system to derive an estimate of the

ensemble statistics over the window from any particular texture image, without the need to present multiple samples for evaluation.

This approach to texture explains how we can have a clear sense that two patterns derive from different statistical generation rules

even though we see only one example of each type. In providing the theoretical basis for texture discrimination of individual

samples, this analysis goes beyond previous work to account for our intuitive sense that we can estimate the generation rule

underlying particular textures. It also analyzes the decision process for discriminating texture boundaries in extended images,

defining a novel ‘‘Gregorian attractor’’ that replaces and extends standard Bayesian decision rules.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Texture; Ensemble; Random; Statistics generation rule
1. Relevance of the complete reconstruction analysis to
human texture discrimination

A general approach to the classification and analysis

of textures is offered by their statistical properties. As an

early exponent of the parallel processing approach to

texture perception, Julesz (1962) developed the analysis

of statistical constraints in random-dot fields. Julesz

defined his statistics to enumerate the mean frequency of
all occurrences of colorings of pairs, triplets and, gen-

erally, k-gram sets of points at all spacings throughout a

texture ensemble. This analysis precipitated an explo-

ration of the order of texture specification that could be

discriminated by human observers (see Klein & Tyler,

1986; Tyler, 2004). To provide a specific example of

higher-order textures, Fig. 1 shows a random plaid

texture accompanied by a binary random pattern with
the same mean, mean digram and mean trigram statis-
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tics (from Julesz, Gilbert, & Victor, 1978). It is only at
fourth-order and beyond that the mean statistics of

these two types of texture differ.

Yellott (1993), on the other hand, published the

demonstration that any pattern may be completely

reconstructed from the full specification of its third-order

statistics, which appears to invalidate the notion that

there is any value in analyzing texture statistics of fourth

and higher-order. This demonstration requires that the
pattern has finite ‘support’, i.e., is of finite extent with a

known value (e.g., zero) outside the region where the

pattern is specified. As long as the third-order statistics

are available to the perceiving system, Yellott argued

that any pattern with finite support is discriminable in

principle from any other. Indeed, an even stricter con-

straint has been specified by Chubb and Yellott (2000),

that any finite pattern is uniquely defined by its digram
or second-order histogram statistics. It should be made

clear that both theorems are based on the discrete his-

togram statistics, which incorporate the particular

numbers of all combinations of all luminance levels at

all spacings in all directions. As such, Chubb and Yellott
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Fig. 1. Examples of a fourth-order random plaid (left) and a random

binary texture (right). One sample is sufficient for us to infer that the

two patterns has different generation rules.

2180 C.W. Tyler / Vision Research 44 (2004) 2179–2186
make clear that the nth-order histogram statistics are

generally a much larger number set that that of the

image itself. The histograms do not provide any com-
pression of the information in the usual sense of statis-

tical cumulation.

As pointed out by Victor (1994), however, this

property of reconstructability from the second-order

statistics is valid only for the statistics of particular

images, while the statistical parameters usually are de-

fined on the ensemble of all possible images that could be

generated under a particular set of statistical constraints.
Interpretation in terms of ensembles and their generator

rules means that it is only the probability of each k-gram
coloring that is specified by the statistics, not the actual

frequency of occurrence in a particular image. Julesz

(1962) originally defined texture statistics in this prob-

abilistic sense. The statistic has a defined value whereas

the probability has only an expected value that does not

mandate a particular value at any point in the image.
Chubb and Yellott’s (2000) demonstrations therefore do

not apply to textures defined by ensemble statistics, so

that one may legitimately ask the question of whether a

texture drawn from one ensemble is discriminable from

a texture drawn from another ensemble. (For maximum

clarity, the term ‘pattern’ will be reserved for the isolated

images that are subject to Yellott’s (1993) constraints,

whereas the term ‘texture’ will be used for an exemplar
of an ensemble generation rule. The ensembles will be

assumed to be effectively infinite for the purposes of this

theoretical development, because the ensemble of even a

binary texture of 100 · 100 elements has 2^10,000 dis-

tinct patterns, far too many for the visual system or even

a computer to reasonably enumerate. It will therefore be

assumed that all ensemble statistics are estimated from

limited random samples of the ensemble.)
This ensemble-based view of texture statistics raises

the problem, however, that pattern statistics do not

provide a basis for discriminating between an image

generated from a particular set of texture statistics and a

random image. The reason is that any pattern could
have arisen from a random generation rule (with equal

probability to any other image), and thus any pattern

from a given set of image statistics could, in principle,

have arisen from the random ensemble. Therefore, the

statistics for any particular image cannot definitively

distinguish the ensemble from which it was drawn from

a random ensemble. In principle, according to this view,

one can test the discriminability of ensemble statistics
only on ensembles of images, which provide an inductive

indication of their generation rule by averaging over

many samples (Victor, 1994). (In finite ensembles one

may be able to distinguish among particular generation

rules, but one can never be sure that the pattern did not

arise from a random generation rule.)

Adoption of the ensemble approach means that the

question of reconstruction of a pattern from its partic-
ular second-order histogram frequencies is avoided;

ensembles are infinite (or extremely large) sets, making

their reconstruction impractical from their statistics at

second, third, or any order because the sets of samples

do not have finite support. In practice, however, per-

ceptual discriminability must be established for sets of

patterns generated from the statistics with the appro-

priate uncertainty on each parameter, so that each one is
a sample from the infinite ensemble. The ensemble is

represented by sets of such particular patterns specified

to any desired order, treating such sets as a way of

approximating the ensemble as a whole. In this way, the

ensemble approach advocated by Victor (1994) avoids

the second-order limitation propounded by Chubb and

Yellott (2000).
2. Problems with the ensemble approach to texture

In one sense, however, the ensemble approach is

subject to the same objection that Yellott (1993) made
against discriminability of a particular pattern. Because

the ensemble as a whole is an infinite (or extremely

large) set, only a finite sample of the ensemble of images

is accessible to experimental test. The finite set that is

actually used in an experiment provides only a sample of

the overall ensemble parameters and one that, in prin-

ciple, could again have been generated by a random

rule. Thus, the ensemble approach does not avoid the
Yellott objection in principle, it merely enlarges the

scope of the test from a single pattern discrimination to

an extended experiment (for anything but the smallest

patterns).

However, the advantage of the ensemble approach is

that the ensemble statistics of all orders up to the pattern

size may be estimated from the sample set, in terms of

both their mean values and their variances (together
with higher-order moments). The important property of

these estimates is that they now assign not only a par-

ticular probability of occurrence to the individual k-
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gram figures (which were all equal under the random

generation rule), but also estimates of their standard

deviation and other statistical moments about the mean.

One can then evaluate whether these ensemble statistics

are significantly different from random or from those of

a comparison set of images generated by a different

generation rule. By providing statistical estimators ra-

ther than simply the defined frequencies of occurrence,
the ensemble approach allows meaningful evaluation of

statistical parameters beyond the second-order mo-

ments.
3. Definition of the statistics of an individual texture

Nevertheless, Victor’s (1994) ensemble approach,

which is acknowledged by Chubb and Yellott (2000), is
unsatisfying as a way to avoid the third-order ceiling. A

glance at Fig. 1 reveals that we do not need an ensemble

of textures to discriminate a texture with statistical

structure from a purely random texture; single examples

suffice in practice. An alternative approach to the issue is

to base the analysis on the specific definition of the

texture as opposed to the broader class of all possible

patterns. As in Klein and Tyler (1986), a texture may be
defined as a pattern that is self-similar over translation

up to some scale of analysis (viz, size of the window

within which the k-gram statistics are evaluated). The

designation ‘‘self-similar’’ is here intended in the sense of

ergodic, where an ergodic pattern is one in which the

statistical parameters of samples of the pattern are

similar to those of the pattern as whole (and of the

infinite ensemble from which the pattern was drawn). It
is not intended to allude to the fractal quality of self-

similarity over scale. Indeed, fractal patterns may or

may not exhibit self-similarity over translation,

depending on their generation rule.

The concept of self-similarity over translation leads

us to a concept of two types of texture (see Fig. 2). A
Fig. 2. Texture types. (A) Example of a regular texture. (B) Example of a ran

generation rule where elements are vertically paired. (C) Semi-regular texture

violation of Julesz’ second-order conjecture) consisting of dot quartets rand

quadrant has quartets in a different configuration that is equated for second
regular texture (such as a grating) is one that is exactly

self-similar on some discrete translation matrix. A sta-

tistical texture (such as a random-dot field) is one whose

local statistics are identical (or not statistically different)

throughout the image. Many of the textures developed

by Julesz (1975) and co-workers are hybrids of these two

types, with random perturbation from a regular matrix.

The definitions of regular and statistical textures may be
expressed mathematically in terms of a windowed ver-

sion of the autocorrelation definition of texture statis-

tics, or windowed autocorrelation function,

WACFkðDRÞ at order k,

WACFkðDRÞ ¼
Z

W ðDrÞ
Yk
i¼1

Lðr þ DirÞdr; ð1Þ

where r ¼ ðx; yÞ, L( ) is the two-dimensional image in r

and Dkr ¼ ðDkx;DkyÞ for a 2D texture, and W ðDrÞ is a

windowing function defining the range of validity of the

statistics.
(This specification is a reduced representation relative

to the histogram statistics preferred by Chubb, Econo-

pouly, and Landy (1994) and Chubb and Yellott (2002).

It assumes that the relevant property for visual pro-

cessing is the average over the intensity histogram at

each location, and is insensitive to special combinations

of intensity levels over space.)

Thus, a statistical texture is a pattern in which the
expected value of the ACF is spatially homogeneous:

WACFkðDrÞ � WACFkðrþ DrÞ ð2Þ

for all r, within the accuracy of statistical estimation.
Specification of this latter restriction is the burden of the

rest of this paper.

For a regular texture, Eq. (2) is restricted to some

discrete subset of points in the space of Dr. The textures

used by Julesz and co-workers, however, were typically

restricted to a discrete grid of neighborhoods in r. In the
dom binary texture; the upper right quadrant is derived from a different

(modified from Julesz, 1975, designed by the present author as the first

omly rotated about point defined on a regular grid. The lower right

-order spatial statistics, but differs at the third order.



Fig. 3. Statistics of the sampling window (exemplified by the gray window). (A–D) show textures with sampling density increasing in factors of 2.

Selected pixels (gray) can exhibit extreme statistics (such as uniform coloration) at low density (A), but are tightly constrained close to the mean level

at high density (D).
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sense defined, a statistical texture may be generated by
tiling of the pattern space with an ensemble of patterns

of the size of the analysis window (see Fig. 3), each

drawn according to the specified ensemble statistics

WACFkðDrÞ. Of course, the texture approach breaks

down when the size of the statistical window W ðx; yÞ
becomes equal to the size of the full pattern, which is

also the point at which the pattern no longer conforms

to the definition of a texture. Theoretically, however, a
pattern will conform to the definition of Eqs. (1) and (2)

as long as the statistical window is smaller than the

pattern by a finite amount. Say, for example, that we

permit statistical windows up to within one pixel of the

edge of the texture (represented as a raster of pixels).

For k-grams up to this scale, there are repeated exam-

ples in the image from which the ensemble statistics may

be estimated (although with a reduced precision as the
number of occurrences decreases with increasing size of

the k-gram) in the Chubb/Yellott theorem. Any window

that contains multiple representations of all k-grams

limits the reconstruction to statistical estimators and

does not permit exact (or even approximate) recon-

struction. Thus, it is only the inclusion of the k-grams

having a single representation in the texture that allows

reconstruction of the texture from its second-order
histograms.

This analysis of the second-order reconstruction

theorem reveals that it is not, in fact, a theorem of sta-

tistical estimation but a theorem of occurrence fre-

quencies (as acknowledged by Chubb and Yellott

(2000)). Without access to the full histogram structure,

one cannot, in principle, reconstruct an image from the

parameters of its statistics (e.g., its means and higher-
order moments) because they are inherently probabilis-

tic concepts. Every instance of the reconstruction from

such order parameters will be different even if the

parameters are known to the full order of the texture

size. Only if the precise frequencies of occurrence are

determined for the full texture, or the full set of mo-

ments for that particular texture, is exact reconstruction

possible. The frequencies of occurrence may be statistics
in the baseball sense but they are not statistical param-
eters in the usual probabilistic sense.
4. Ideal observer for the texture generation rule

If one can make a valid inference of the generation

rule underlying particular textures, it follows that there

must be an ideal observer for such a estimation, one that

can extract all the information in the particular texture

relating to the generation rule (assuming ergodicity of
the generator rule over space). A plausible candidate for

the ideal observer would be the mean value of each point

in the k-gram histogram H at every order k.

bI ðlk;DrÞ ¼ Hkðl;DrÞ; ð3Þ
where lk is the dimensionality of the color combinations

at the kth order.

Thus, for a particular pattern, the observer’s best

estimate of the mean density in the generation rule (in

the absence of other information) is the mean density of

that pattern; the best estimate of the luminance histo-
gram is the luminance values available in the histogram

of particular pattern, and so on.

Of course, there is the opportunity to go beyond the

data if prior information is available on the likelihoods

of particular values in the generator histograms. For

example, if the mean density in the sample texture is

close to 0.5, prior experience with experimenter behavior

tells us that the generator density was probably 0.5,
rather than the actual value of the mean. However, if the

mean value of the prior is well outside the confidence

interval for the mean from this sample, we would be

justified in assuming that the generator density was

some value other than the prior, and is consequently

best estimated by the mean itself. In related fashion, one

can extract higher-order ‘priors’ from the sample itself.

The null hypothesis for the mean frequency of all
histogram values is that derived from the mean fre-

quencies of the constituents through the binomial

probabilities of k-grams of their combinations. Thus, for
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a 0.5 density black/white texture, we should expect the

second-order histogram to be 0.25 black/black, 0.5

black/white and 0.25 white/white at all displacements.

Any empirical value in the histogram (within the bino-

mial confidence interval for this sample) may be sup-

posed to indicate that the generator value was derived

from this expectation. Only values that deviate signifi-

cantly from these expectations (in terms of the statistical
confidence interval) should be taken as valid estimators

of a non-random component in the generator rule.
5. Incorporating the priors through a Gregorian attractor

Interestingly, this analysis leads us to a post-Bayesian

rule for statistical estimation. Let us call this a ‘Grego-

rian attractor’. Instead of Bayesian rule of the posterior

probability being the weighted product of the prior prob-

ability Pkðl;DrÞ and the empirically observed probabili-

ties Ekðl;DrÞ, the Gregorian attractor is a decision rule

that accepts the prior completely if it is compatible with

the observed probability, but switches to the observed
probability completely if the latter falls outside the

confidence interval of the prior. In symbolic form, we

would have:

Ĝðli;DrÞ ¼ Pkðl;DrÞ; if jEiðl;DrÞ � Piðl;DrÞj < zri;
Ekðl;DrÞ; otherwise;

�
ð4Þ

where rk is the standard deviation of the occurrence

frequency and z is the criterion significance level in units

of rk (taking a typical value of 2 < z < 4).

In the context of higher-order texture perception, we

may envisage that the Pk are derived from the combi-

natorics of the lower-order histograms, such as the

binomial probabilities in the case of a binary texture.
Thus, we have a ready means to fill in the priors at each

order from the information available in the texture. This

procedure may be used to define the ideal observer for

the decision rule as to whether to accept or reject the

prior at each order of texture definition.

The Gregorian attractor corresponds to a probabi-

listic instantiation of Gregory’s (1980) concept of per-

ceptual hypothesis testing. In reduced-cue situations, the
perceptual system (in visual and other sensory modali-

ties) develops hypotheses as to the external reality

underlying the sensory input. The characteristic of these

hypotheses is that they are discrete interpretations, each

incompatible with the next. The perceptual system

evaluates the validity of one hypothesis (such as, for

example, that a set of local motions derives from a rigid

3D transformation). If this hypothesis fails (because no
rigid transformation can be found that fits the full set of

motion data), a decision is made to reject the hypothesis

and a new hypothesis is generated (such as that the local
motions fit a pair of rigid transformations). This process

of hypothesis testing obviously must have some error

tolerance, even if that tolerance is determined by the

intrinsic noise of the sensory signal.

As made explicit by Gregory (1980), the perceptual

process of hypothesis testing is fully analogous with the

corresponding process of scientific investigation as a

whole. The hypothetico-deductive system of science is
based on the concept that hypotheses are generated by

deduction from one set of data and tested against an-

other set. Further, acceptance or rejection of a hypoth-

esis is based on some level of error tolerance. Strictly,

the deviation of the new data from the predictions of the

hypothesis has to be outside the statistical error range to

be considered a significant violation. Practically, the

possibility of experimenter error (either operationally or
conceptually) is also factored in by the wider commu-

nity, so the violations must be large and consistent be-

fore a plausible scientific hypothesis is taken to be

rejected, particularly if it is well supported by a wide

array of prior studies.

Thus, the basic concept of a Gregorian attractor is

well developed in statistical analysis, making a binary

choice between the experimental and the null hypothe-
ses. There is no case in standard statistical practice

where the Bayesian concept is applied––by taking the

product of the distributions for experimental hypothe-

sis and the null hypothesis. Statistical estimators always

either accept or reject the null hypothesis based on a

criterion level derived from the probability distribution.

In perception, however, either the Bayesian or the

Gregorian rule may apply, according to circumstance.
When the two perceptual hypotheses are very close in

form, the Bayesian rule may make sense (for example in

estimating surface slant in a visual scene from stereo-

scopic and texture gradient cues, each with their own

perceptual limitations). This slant estimation task is

simulated in Fig. 4, in which the statistical decision is

made between a prior theoretical slope (Fig. 4A) or a

best-fitting empirical slope (Fig. 4B). However, the
decision to split from this compromise may be taken

when the quantitative deviations become too extreme.

This splitting point amounts to a Bayesian rule for

abandoning the Bayesian combination principle in favor

of the dichotomous decision of Eq. (4), combining the

two hypotheses into a joint solution in which both are

true (Fig. 4C). In perception, the decision to split

amounts to a version of perceptual transparency. In-
stead of a single plane, the scene may be perceived as

two transparent planes with the scene coloration split

between them. Instead of a moving texture, the motion

aftereffect may be split into a stationary object with a

flow moving over it. And so on. Thus the statistical

priors of the three kinds of hypothesis pðP Þ, pðEÞ and

pðSÞ, may define the choice between the interpretation in

terms of (i) the prior hypothesis, P , (ii) the empirical



Prior Hypothesis (P) 

Empirical Unitary 
Hypothesis (E) 

Empirical  Split 
Hypothesis (S) 

Fig. 4. Illustrative data for a sloped function defined by two separate

sensory cues (filled and open circles). The three panels illustrate the

Gregorian choice between the Bayesian prior, P (standard slope, panel

A), the empirical hypothesis, E (best-fitting slope, panel B) and the

transparent split, S (dual slopes, panel C).

Fig. 5. Biased texture. Is this an extreme example from a uniform

texture rule, a texture gradient from high to low density, or a seg-

mented texture consisting of two squares with different density?
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hypothesis, E, and (iii) the split hypothesis, S, in which

both are simultaneously valid.

From these considerations, we may derive the final

version of the decision rule, which may be termed the

‘generalized Gregorian attractor’. Here the deviation

from the null hypothesis, or Bayesian prior, results in a

tripartite choice of options, CH based on their own

Bayesian priors pðEÞ, pðEÞ and pðSÞ in this situation.

Ĝðli;DrÞ¼

Pkðl;DrÞ; if jEiðl;DrÞ�Piðl;DrÞj<zri;

max

pðP Þ 	 Piðl;DrÞ;
pðEÞ 	 Eiðl;DrÞ;
pðSÞ 	 Siðl;DrÞ;

2
4

3
5 otherwise:

8>><
>>:

ð5Þ

If the observation falls within the specified confidence

interval zr of the prior, the prior is accepted. If not, the
outcome is probabilistically assigned among the prior, the

novel stimulus-based hypothesis and the simultaneous

application of both hypotheses, according to their own
relative prior weightings of plausibility. For example, if

we looked at a texture that was white on one side with

about 50% black dots on the other side (Fig. 5), it would

be well outside the distribution of a balanced black/white

texture. We could decide that it was an extreme example

from an equal black-white distribution (P , with a very
high z), a biased texture from a different generation rule

(E) or a segmented image with the two sides exhibiting

two rules independently (S). In this case, the decision

concerning the first-order density rule has no priors

within the image to aid the decision. Which we decide will

depend on our own prior experience with such textures in

the laboratory and in the world in general, and may be

subject to large individual differences. The generalized
Gregorian attractor may be further expanded to include

any other form of competing hypotheses among which

perception alternates probabilistically.
6. Conclusions

In conclusion, the local roving window definition of a

texture allows one to derive an estimate of the ensemble

statistics from any particular texture image. For two

sample images drawn from different ensemble rules, the

viewer is thus in a position to compare the estimates of

their ensemble statistics. This definition of texture allows
the ensemble statistics to be estimated from an individual

sample texture, without the need to present multiple

samples for evaluation. The properties of the ensemble

are implicit in each individual sample of the texture as

long as the sample is substantially larger than the win-

dow of analysis. This approach to texture explains how

we can have a clear sense that two patterns derive from

different statistical generation rules even though we see
only one example of each type. In providing the theo-
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retical basis for texture discrimination of in individual

samples, this analysis goes beyond those provided either

by Chubb and Yellott (2000)––for whom there is no

generation rule, only specific patterns––and Victor

(1994)––for whom the generation rule is accessible only

through multiple samples––to account for our intuitive

sense that we have some estimate of the generation rule

underlying particular textures.
Analysis of the decision structure required to account

for the texture perception leads to a post-Bayesian rule

for statistical estimation appropriately termed the ‘gen-

eralized Gregorian attractor’. Instead of Bayesian rule

of the posterior probability being the weighted product

of the prior probability and the observed probabilities,

the decision rule accepts the prior completely if it is

compatible with the observed probability, but switches
to an alternative strategy if the latter falls outside the

confidence interval of the prior. In perception, various

rules may apply, according to circumstance (Gregory,

1980). When the two hypotheses are very close in form,

the Bayesian rule of the product of the two competing

distributions may make sense, and has been validated by

considerable experimental support. A relevant case is

that of cue combination, where two or more cues may
carry qualitatively similar information that is quantita-

tively different. In such cases, it may make sense to

combine the two estimates in Bayesian compromise. The

decision to split from this compromise, on the other

hand, may be taken when the quantitative deviations

become too extreme, leading to the dichotomous deci-

sion strategy of Eq. (4). This splitting point amounts to

a Bayesian rule for abandoning the Bayesian combina-
tion principle. This splitting decision is the statistical

instantiation of Gregory’s ‘hypothesis-testing’ view of

perceptual verification.

Perceptually, however, it may make sense to abandon

the need for either a compromise or a split, and instead

combine the two hypotheses into a joint solution in which

both are true (Eq. (5)). For example, the local motion of

dots can be rigid to both the left and the right if there is
motion within a pair of transparent planes. In the texture

context, one could imagine regions of texture in which

one rule applied with a different rule in other regions, like

a patchwork quilt. In everyday life, such regions are

typically marked by changes in the mean color of each

type of texture, but it is obviously possible to apply dif-

ferent rules without such color distinction. This brings us

to the realm of texture segmentation, in which it is as-
sumed that the image is composed of regions of different

textures each of which is homogeneous in its properties.

Determination of the boundary of such textures corre-

sponds to an application of Gregory’s hypothesis-testing

in the texture domain. Having established the hypothesis

of one set of texture parameters in one region of the

image, the perceptual systemmust pursue that hypothesis

to the boundary of the texture, then decide to terminate
the zone of application of that hypothesis as the new

texture begins to dominate the statistical estimator. Such

processes are commonly incorporated into computer

algorithms for texture segmentation, but it is clear that

the visual system must perform the same analysis for its

interpretation of the structure of the world.

Finally, the discussion of texture segmentation is not

meant to exclude the issue of texture gradients and
continuous variation of texture parameters for shape or

of structural reasons. It should be clear that the Grego-

rian attractor of Eqs. (4) and (5) allows the decision of a

continuous texture when the local change falls within the

error tolerance. Although there may be discrete priors on

the parameters to be expected in the laboratory situation,

these are unlikely to be found in real-world textures.

Thus, we may readily allow the perceptual hypothesis
being tested to be a function of space rather than to be a

fixed value. The visual system may develop the function

of a continuous variation in the texture parameters

corresponding to a texture gradient of some shape in

space (linear receding, spherical, or any other shape).

Such continuous variation is embedded within the

equations when expressed as functions of space (or time),

rather than discrete values.
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